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A plane jet in a cross-flow has been simulated using large-eddy simulation (LES) with 
artificial inflow and wall boundary conditions. A mesh adapted on the mean velocity field 
was used to increase the resolution in the jet shear layer. Results from simulations with a 
standard Smagorinsky-Lilly model, a one-equation model, and a dynamic model are 
compared, Agreement between the measured and predicted results is reasonable overall, 
but differences between simulations with the various residual scale models are small. 
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I n t r o d u c t i o n  

Recently, a number of complex flows have been computed with 
large-eddy simulation (LES) techniques. The geometries simu- 
lated include, for example, backward facing steps (Akselvoll and 
Moin 1993), flow over a step or a hemisphere (Manhart and 
Wengle 1993), or flows in duct bends (Breuer and Rodi 1994; Su 
and Friedrich 1994). The results of these calculations suggest 
that some of the problems associated with an inadequate repre- 
sentation of the anisotropic and low-Reynolds number turbu- 
lence production and dissipation in the near-wall region are 
relatively insignificant in complex shear flow as compared to 
flows dominated by wall effects such as turbulent channel and 
pipe flows. 

The difficulties in calculating the flow in the immediate 
vicinity of the wall must be attributed to the fact that the basic 
assumption of scale separation fundamental to LES breaks down. 
As the viscous sublayer is approached, a distinction between the 
energy containing virtually inviscid motion and the dissipative 
scales is impossible. (We refer to the region where direct viscous 
effects are important as the viscous sublayer. Some authors 
(Tennekes and Lumley 1972) further distinguish between the 
viscous and the buffer region.) If not all scales associated with 
the production of turbulent energy are resolved, backscatter 
from the unresolved to the resolved motion can be observed 
(Rogallo and Moin 1984), and, as noted in (H~irtel and Kleiser 
1994), this can become large as the wall is approached. Strictly a 
proper LES calculation of all important scales in the sublayer 
would effectively correspond to a direct numerical simulation 
(DNS) of all scales. However, in practice, good results have been 
obtained for channel and pipe flows at moderate Reynolds 
number by increasing the resolution just sufficiently to represent 
the most important structures in the wall region, while at the 
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same time, adjusting the residual scale model by the addition of a 
wall-damping function (Piomelli 1987) or by using a dynamic 
model (Germano et al. 1990) to account for the lost turbulence 
production in the unresolved scales. 

For the high Reynolds numbers, Re occurring in engineering 
practice, the application of such an approach would be pro- 
hibitively expensive. If it is assumed that only the largest struc- 
tures in the viscous sublayer need to be resolved and that the size 
of these structures scales on the thickness of the viscous sublayer 
itself, then resolution requirements increase approximately as 
Re 2"6. Here, use has been made of Blasius's law for the friction 
coefficient in pipe and channel flows to approximate an upper 

bound for the thickness of the sublayer, g~uo ~ v/ (ub  R ~ e - ° 2  ), 
where u b is the bulk-averaged velocity, and v is the kinematic 
molecular viscosity. Thus, the computational requirements for an 
LES of the viscous sublayer increase at the same rate as those 
for a DNS, although the local resolution requirements are much 
lower. In complex high-Reynolds number flows, it will, therefore, 
be necessary to introduce models for the near-wall viscous sub- 
layer region. 

The aim of the present work was to provide a simulation of a 
test case where wall effects do not dominate and so to contribute 
towards the development of LES techniques for application in 
practical engineering problems. A plane jet of air issuing nor- 
mally into a duct flow has been calculated using LES. A streak 
line of the flow considered is shown in Figure 1. 

As the jet bends, the cross flow is accelerated, because the 
effective cross-sectional area reduces, resulting in a flow pattern 
farther downstream which resembles a diffuser, as the main flow 
is decelerated and re-attaches to the wall. The flow is charac- 
terised by the strong shear layers associated with large stream- 
line curvature as well as a large recirculation zone generated by 
the jet-entraining fluid. This configuration has been previously 
investigated experimentally by Chen and Hwang (1991) and re- 
sembles some of the features of more complex flow fields arising 
in air conditioning problems or dilution zones of gas turbine 
combustors. Similar configurations have been studied experimen- 
tally by Haniu and Ramaprian (1989) and Patton et al. (1974). 

The models used in this work are reviewed in the next 
section, followed by a description of the calculation methods 
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employed, and the flow geometry as well as the boundary condi- 
tions used. 

Basic equations and modelling 

As is well known, the equations for the large-scale motion can be 
obtained by applying a spatial filter to the Navier-Stokes equa- 
tions (indicated by an overbar). With a constant filter width, the 
equations for a constant density fluid are: 

c?~j = 0 
c?x j 

(1) 

O~ i O~ti~t j + "rij 1 (Jfi O. 2bli 
+ + v - -  

igt ~xj O 3x~ Ox 2 
(2) 

Here the residual stresses are given by 

Tij = Llibl j -- ~ i ~ j  (3) 

and u i is the velocity, p is the pressure, v is the kinematic 
molecular viscosity, and Q is the density. The temporal and 
spatial coordinates correspond to t and xj, respectively. 

A numerical simulation of the flow considered requires a 
strongly nonuniform mesh in order to resolve the thin jet, while 
at the same time, covering the larger flow domain. This situation 
is typical of a number of engineering applications where the 
geometric scales of the problem vary considerably, and computa- 
tional resources do not allow uniform mesh spacings that would 
resolve the smallest geometric scales throughout the flow field. 
For these flows, the definition of a large-scale flow quantity has 
to be modified in such a way that the spatial filtering varies with 
spatial position. Considering the one-dimensional (I-D) case for 
brevity, a spatial average can be defined with the convolution 

f ( x )  = f ? G [ x  - x ' ,  A ( x ) l f ( x ' )  dx '  (4) 

where G is the filtering operator, depending on the relative 
spatial position ( x - x ' )  and filter width 2A, which as indicated 
above is a function of position. The filtering is symmetric about x 
and is mean preserving so that 

~ f 3 G [ x - x ' , A ( x ) ] d x ' =  1, 

while the integration boundaries c~ and 13 are defined suitably 
(Aldama 1990). 

Notation u, 

C,, C, constants in the one-equation model 
C s Smagorinsky constant 
D nozzle width u(.) 

f spatially filtered variable 
( f )  ensemble-averaged variable n 
G [ x - x ' ,  A(x)] spatial filtering operator 
H duct height xj 
k = % / 2  residual stresses kinetic energy Greek 
L length of the solution domain 
Pe Peclet number 
p pressure e~, 13 

~sub p solution vector for the discrete p r e s s u r e  ~ij 
field 

Ap solution vector for the pressure increment 8, 
Re Reynolds number A r 

A(x), A 
Sij strain rate As 
S source terms 
t time v 
t a = u b / L  residence time vt 
T, D coefficient matrices P 
uj Cartesian velocity components Tij 
u b bulk velocity "ri~ 

T w 

( U )  - -  /2 b 

( U ) m a x  --  bt b 

tangential velocity component 
fluctuating velocity component and rms of 
the velocity 

nondimensional excess velocity 

solution vector for the discrete velocity 
field 
Cartesian coordinates 

integration boundaries 
thickness of the sublayer 
Kronecker delta 
time increment 
length scale for test filter field 
residual stresses length scale 
length scale of Scotti et al. (1993) 
kinematic viscosity 
eddy-viscosity 
density 
residual stress tensor 
anisotropic part of "rij 
wall shear stress 
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It is well known that such filtering does not commute with 
spatial differentiation. Strictly, the filtered equations above 
should, therefore, contain additional terms corresponding to 
commutation errors. This can be seen by applying the filtering 
(Equation 4) to a spatial gradient resulting in 

~ af(x') 
Ox JS G[x -x ' ,  A ( x ) ] ~  dx' (5) 

so that from integration by parts 

0z-F  
Ox 

= G [ x - x ' , A ( x ) ] f ( x ' ) [ ~  

( A )  
O G [ x - x ' , A ( x ) ]  

f ~  dx'  (6) - f ( x ' )  ax' 

(n) 
The first term (A) vanishes, because G[x - x ' ,  A(x) ] f=  0 on the 
integration boundaries a ,  13. Applying the chain rule to the 
remaining term (B) then results in 

Of(x) 
- ~x f? f (x ' )G[x-x ' ,A(x ) ]dx '  Ox 

ff3f(x,) OG[x - x ' ,  A(X)] dA(x)  

L OA dx 
- -  d x '  

Of(x) Of(x) dA 

Ox aA dx ( x )  (7) 

since 

OG[x-x',A(x)] OG[x-x',A(x)] dA(x)  

c~x' 0A dx 

aG[x - x', A(x)] 
Ox 

(8) 

This expression can easily be expanded to three spatial dimen- 
sions. Thus, the averaging process with a filter width varying 
continuously in space introduces terms of the form 

of da 
aA dx 

to the equations where (Of/Oh) is of the same order as the 
spatial derivatives in the smallest resolved wave numbers. 

Some authors (Ghosal et al. 1995) redefine the filtering 
operation so that the physical space corresponding to the 
nonuniform filter width is mapped onto a computational space, 
where the filter width is no longer a function of position so that 
the spatial filtering can be applied in the usual manner. This 
results in filter functions of the form G [ x - x ' ,  A(x, x')] in physi- 
cal space, which are biased towards finer mesh resolution. The 
leading term of an expansion of the commutation error associ- 
ated with this kind of filter can be shown to scale on A 2. Also, as 
pointed out by van der Ven (1995), a family of filters can be 
constructed for which the commutation error scales on an arbi- 
trary power of A. However, the physical interpretation of the 
resulting filtered fields is ambiguous. It is not clear how these 
filter definitions affect the size of the terms in the equations in 
relation to the commutation error, in particular the size of the 
residual stresses. 

In the present work, the commutation errors are neglected. 
On the rectangular mesh used for some of the simulations, the 
spacing varies smoothly. Mesh expansion ratios lie between 0.9 
and 1.1, so that ( d A / d x )  is small, and commutation errors are 
about an order of magnitude smaller than the associated spatial 
derivative terms. On the adaptive mesh, the expansion ratios are 
locally much larger so that the commutation error can become 
significant in the smallest wave numbers. It is argued that, in this 
case, numerical errors become large in the smallest resolved 
wave numbers also so that an explicit treatment of commutation 
terms is not justified. 

To close the filtered transport equation, the anisotropic part 
of the residual stresses 

7~j = Tij - ~Sijk (9) 

is approximated alternatively by a standard Smagorinsky-Lilly 
model, a dynamic model and a one-equation model. These eddy- 
viscosity models can be cast into the following form 

,r~ = - 2v, gij (10) 

where v t is the eddy-viscosity, and Sij=(1/2)[(Oui/OXj)+ 
(OUi/OXi)] is the strain rate. The isotropic part of the residual 
stresses [(2/3)8ijk] was included in the pressure term in the 
usual manner. 

The standard Smagorinsky-Lilly model (Smagorinsky 1963) 
was written as 

(1l) 

where a characteristic length scale for the smallest resolved 
motion was obtained from 

A = (Ax AyAz)  1/3 (12) 

a measure for the local mesh refinement. Alternatively, the 
length scale A s suggested by Scotti et al. (1993) was used to 
account for grid anisotropy. With equilibrium assumptions 
(Schmidt and Schumann 1989) a value of C s = 0.165 was calcu- 
lated assuming that 2A is the smallest resolvable wave length. 
This value was increased to C s = 0.3 in two of the simulations 
presented below. 

For the dynamic model, an approach suggested by Piomelli 
and Liu (1995) was adopted where the Smagorinsky parameter 
C s in Equation 11 was evaluated dynamically from 

, 2 - - ( [ (C saA )  [sijlsij] --~i~2-3/2}~ij 
(CsAT)2 = (13) rL/3 

Here, A T is the filter width for the test field (test filtering is 
indicated by a tilde or [ ]~), and ~ is the anisotropic resolved 
part of the test field residual stress described by Germano's 
identity (Germano et al. 1991). This expression is obtained in the 
usual manner; i.e., by introducing a test filter field, invoking a 
gradient assumption for the residual stresses and applying a 
least-squares minimisation to Germano's identity. The above 
equation was solved by iterating twice, taking the most recent 
value of C s for C~ in the test-filtering operator on the right-hand 
side of the equation. The test field was obtained by averaging 
over adjacent mesh cells, corresponding to the use of a box filter 
with a width of A r = 3A. Negative values of C s where clipped to 
zero, to avoid the appearance of negative viscosities which corre- 
spond to "explosive"-type physical phenomena. 

For the one-equation model (Schmidt and Schumann 1989) 
the closed form of the transport equation for the residual stresses 
energy k was solved to obtain a velocity scale for the eddy-viscos- 
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ity and the anisotropic part of the residual stresses was then 
approximated with 

"riaj = -- 2(C~kl/2A )gi) (14) 

The transport equation for k is 

- -  4- - -  ri j i j  + - -  + v - C ~ - -  (15) 
Ot axj axj ~ ] Oxj ] A 

where % = 0.7 is a turbulent Prandtl number. The constants C~ 
and C~ appearing in the above equations were evaluated from 
equilibrium assumptions as suggested by Schmidt and Schumann 
and were assigned the values 

C~ = 0.0856 C~ = 0.845 (16) 

Calculation methods 

A finite volume method was used to obtain a solution of the 
spatially averaged Navier-Stokes equations written in terms of 
general curvilinear coordinates. A nonstaggered mesh arrange- 
ment was adopted in conjunction with a pressure-smoothing 
technique of the type proposed by Rhie and Chow (1983) to 
prevent odd-even decoupling of the pressure and velocity fields; 
velocities and pressure were stored at cell centres. 

The discretisation of the convection terms is a potential 
source of numerical error in LES calculation and a subject of 
debate. Flux limiting or TVD-type schemes (Jones 1994), which 
improve numerical accuracy in Reynolds average calculations 
considerably, fail for LES calculations (Sandham and Yee 1983) 
unless the resolution is very high (Boris et al. 1992). As with 
other asymmetric approximations to the convection terms, they 
introduce damping to the discretised equations which scales with 
the cell Peclet number Pe = u i A x / v  (Shyy 1985). This can 
remove a large part of the turbulence and even lead to a 
predicted but unphysical laminarisation. It is well known that 
although central differences are free from "numerical" diffusion, 
the corresponding solutions can exhibit oscillatory behaviour 
(Leonard and Mokhtari 1990). However, many workers have 
obtained satisfactory results using second-order central differ- 
ences for the convection terms. Higher-order symmetric schemes 
give rise to large errors in the smallest simulated scales if these 
are not well resolved and thus do not seem to offer a prospect of 
improved numerical accuracy in the LES computations consid- 
ered. Therefore, in the present work, all spatial terms were 
approximated via second-order central differences, except for the 
convection terms in the k-equation. These were represented by a 
TVD-type approximation to avoid nonphysical negative values 
of k. 

a.) 

Figure  2 Compu ta t i ona l  mesh w i t h  87 x 30  x 30: a) rectan- 
gu lar  mesh;  b) adapted on the  arc length of the mean  
ve loc i ty  

LES of a p lane je t  in a cross-f low: W. P. Jones and M. Wille 

An implicit difference scheme was utilised with time deriva- 
tives being represented by the second-order accurate three-point 
backward difference approximation: 

Ou 3 U n +  1 - -  U n 1 U n - -  U n -  1 

Ot 2 8t 2 ~t 
- -  + O ( ~ t  2) ( 1 7 )  

The difference equations resulting from the discretisation are 
written using matrix notation, so that, for example, for the 
u-component 

n n + l  _ n  n + 2 ~ t T u n + l  2 o . ~  n + l  _ = - ~ o ~ p  + S  ( 1 8 )  

Here T, D, and S are finite difference coefficients, where T 
corresponds to convection and diffusion, D is associated with the 
pressure gradient, and S represents any remaining terms, includ- 
ing the cross-stresses not contained within T. If T and S are 
evaluated at time t,+ ~, this is a second-order accurate approxi- 
mation in time to the momentum transport equation. 

To devise a solution algorithm, the above equation is first 
expressed in terms of the pressure differences Ap = pn+ ~ _ pn 
so that 

( l  + ~ S t T ) u  n+l + ~ 8 t D A p = u n - ? ~ S t D p "  + S (19) 

To solve this system of equations, an approximate factorisation is 
then applied: 

( I  + ~ 8 t T )  (u "+ t/2 + ~ S t D A p )  = u" - ~ S t D p "  + S 

U* 
and this system of equations is solved in two steps: 

(20) 

u* = (1 + ~ 8 t T ) - l ( u  n - 3 8 t D p  ~ + S) 

un+ i/2 = u* - ~ 8 t D A p  

(21a) 

(21b) 

Equation 21a is solved here with the elements of T and S 
evaluated in terms of the most recent solutions available to yield 
u*. A similar approach is adopted for t'*, etc. The resulting 
velocity field is used in conjunction with Equation 21b and is 
substituted into the continuity equation resulting in a Poisson 
equation which is solved to yield the pressure increment Ap from 
which the solution u "+ ~/2 corresponding to a mass-conserving 

I velocity field is calculated. The index n + _v has been introduced 
here to indicate an interim solution obtained through evaluation 
of some of the coefficient matrices in terms of the solution at 
time t,, which results in a truncation error in u "+ ~/2 and p"+ L/2, 
which is O(gt2). This corresponds to a first-order error to the 
difference Equation 19 and, thus, to a first-order approximation 
to the differential equation. 

To maintain second-order accuracy a second-stage factorisa- 
tion is applied where the coefficients are now evaluated in terms 
of u ~+ 1/2 etc. and where now z~p = p"+ ~ - p '+  1/2, SO that 

2 U n - -  2 ( l + 2 5 t T ) u n + ~ + ~ t D A p  = ~ t D p n + l / 2 + S  (22) 

This equation is then solved as above in Equation 21a and 21b to 
give the solution at tn+ 1. The difference between the solution 
arising from this two-stage procedure and a fully implicit solution 
of Equation 19 is of the order of the truncation error in the 
approximation to the differential equations and can, conse- 
quently, be ignored. 

The resulting algebraic equations were solved iteratively; a 
preconditioned conjugate gradient method was used for the 
pressure difference Ap, while the velocity field was solved with a 
simple line Gauss-Seidel method. 
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Computational parameters and 
boundary conditions 

Simulations were carried out for a single-plane jet of air issuing 
perpendicularly into a duct with cross-flowing air. This flow 
geometry, previously investigated by Chen and Hwang (1991), is 
depicted in Figure 1, while the coordinate system to describe the 
flow has its origin at centre of the jet nozzle. 

The Reynolds number based on the duct height H and the 
bulk velocity u b was Re = 19,000, while the ratio of jet velocity 
uj and u h was 7.34. The Reynolds number for the jet based on 
the nozzle width D and the bulk exit velocity was Re = 5815. 
Although the jet was slightly heated in the experiments of Chen 
and Hwang (1991), Grasshoff numbers were small, so that den- 
sity variations were considered negligible and, thus, not included 
in the calculations. 

The duct in the experiments of Chen and Hwang (1991) 
extended over two heights H in the spanwise direction, but they 
found the flow to be 2-D over most of the cross section. To 
reduce computational cost, the problem was, therefore, treated 
as an infinite channel, thus neglecting the secondary motion 
induced by the duct side walls. Calculations were performed on a 
domain covering one duct height in the spanwise direction, and 
periodic conditions were applied in this direction. 

In the streamwise x-direction, the domain covered one duct 
height upstream of the jet exit and extended 5.15 duct heights 
downstream of the jet exit, corresponding to the experimental 
configuration. Relatively coarse meshes were used with 87 × 30 

× 30 grid nodes in the streamwise, the wall-normal, and the 
spanwise directions, respectively. Initially, a rectangular mesh 
was used which was refined in the vicinity of the jet and smoothly 
expanded towards the inflow and outflow boundaries. Results 
from calculations with this mesh were then used to generate a 
mesh adapted on the solution arc length of the magnitude of the 
velocity vector (Menzies 1996). 

Wall boundaries were approximated using Gr6tzbach's (1983) 
approach, because computational resources did not allow for a 
resolution of the viscous sublayer. The wall shear stress "r w was, 
thus, assumed to be linearly related to the instantaneous spatially 
averaged tangential velocity ~t at the first grid node adjacent to 
the wall, so that 

Ut  
%. = ,--~Z-(% ) (23) 

~u,2 

Here (~t)  is the time mean average of the tangential velocity 
component, and the mean wall shear stress ( % )  was obtained 
assuming a semilogarithmic profile for (~t).  This approach has 
been found to give reasonable results in plane channel and pipe 
flows, and in addition, it was felt that the flow around the jet 
would be largely uninfluenced by the details of the wall flow. 

At the inflow an instantaneous velocity ui = ( u i ) + u '  i was 
specified in a manner similar to that used by Lee et al. (1992). 
The fluctuating component u' i as obtained by calculating the 
inverse fast Fourier transform (FFT) of a randomly generated 
homogeneous velocity field in wave space, and the result was 
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scaled to be consistent with the rms values observed in plane 
channel flow. As an alternative, a fully developed channel flow 
was monitored and used to provide in-flow conditions for the 
cross-flow. The results obtained using the two methods were 
practically identical with regard to the first and second moments. 
As anticipated, this indicates that the turbulence production in 
the shear layers surrounding the jet remains largely uninfluenced 
by the turbulence of the incoming cross-flow. Changes in the 
turbulence properties at the jet inlet also had negligible effect. A 
nonreflecting convective condition (Jin and Braza 1993) was used 
at the outflow. 

Compared to simpler problems, the cost for the LES compu- 
tation in terms of CPU time was considerably increased, particu- 
larly because a fine computational mesh was required to resolve 
the flow around the jet exit. To maintain temporal accuracy, the 
maximum Courant number was maintained at about 0.3, and this 
resulted in a small time-step. 

Results 

In this section, the results from the LES for different meshes and 
runs with the different models described above are compared to 
measurements. The total integration time corresponded to at 
least four residence times ta = (ut,/L), where L is the length of 
the solution domain, and u b is the bulk velocity of the cross-flow. 
After ta = 2.5, the solution was assumed to be statistically sta- 
tionary, because profiles for first and second moments did not 
change significantly for about t a = 1. Calculations were then 

LES of a plane jet in a cross-flow: W. P. Jones and M. Wille 

continued for at least another 1.5 residence times to obtain 
statistical quantities. The statistical sample size was increased by 
averaging in the homogeneous (spanwise) direction. 

Chen and Hwang (1991) measured the axial velocity compo- 
nent and present their mean data in the form of a nondimen- 
sional excess velocity 

(u)  - uh (24) 
u°  (u)m~x --Ub 

where u b is, again, the bulk velocity of the cross-flow and (U)max 
is the local maximum of the mean axial velocity component in a 
cross section at a downstream location x/D.  The turbulent axial 
fluctuations they measured were presented as intensities 
u ' / ( u )  . . . .  where u' is the rms value of the velocity. This 
notation was adopted in the present work to compare measured 
and simulated data. It is worth noting here that the measure- 
ments only cover a short distance x / D  = 10 downstream of the 
jet nozzle (cf. Figure 1), and thus, it was impossible to draw any 
conclusions concerning the predicted flow in regions farther 
away from the jet exit. 

A dapted mesh 

Initial simulations were carried out on a rectangular mesh, and 
the solution was used to generate an adapted mesh. Both meshes 
are shown in Figure 2. It can be observed that the spacings in 
both meshes must vary strongly, because the slot through which 
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the jet exits is only 5-mm wide, while the computational domain 
is 715-mm long. The geometric scales of the problem, thus, vary 
by two orders of magnitude. It can also be seen that the number 
of grid nodes in the jet shear layer increased dramatically with 
the mesh adaptation so that the number in the jet exit rose from 
8 nodes on the rectangular mesh to 33 for the adapted mesh. 

Results from calculations with the Smagorinsky-Lilly model 
on both a rectangular and adapted mesh are shown in Figures 3 
and 4. The simulation on the rectangular mesh and the first 
simulation on the adapted grid were carried out with a value of 
C s = 0.3 and A (Equation 12) used as a length scale for the 
residual stresses. The results for the second simulation on the 
adapted mesh shown in the figure were obtained with a 
Smagorinsky constant of C s = 0.165 and the length scale A s 
modified according to Scotti et al. (1993) to account for mesh 
anisotropy. Profiles for (u>e and u'/(U>max are plotted against 
the nondimensional wall normal direction y /H at several dis- 
tances x/D downstream of the jet exit. 

The mean velocity profiles indicate that the part of the flow 
corresponding to the accelerated cross-flow is reproduced rea- 
sonably well in all predictions. The results for the simulation on 
the rectangular mesh show slightly better agreement with the 
measured data, but the difference between measured and pre- 
dicted data cannot be identified with certainty because of the 
normalisation used for the measurements. The maximum velocity 
of the jet is probably underpredicted in all calculations and, thus, 
would explain the observed discrepancies between measured and 
predicted profiles. 

The inner part of the flow corresponding to the recirculation 
region shows larger disagreement. Whilst the measurements indi- 
cate an almost constant reverse flow toward the shear layer, all 
the predictions display profiles consistent with a solid body 
rotation typical of the recirculation zones found in flows, such as 
that over a backward facing step. Again, differences between 
various predictions are visible, but generally they are smaller 
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than the deviations from the measured data. With all residual 
stress models, the predicted jet trajectory coincides with the 
measurements close to the jet exit, but farther downstream, the 
predicted jet path is bent more by the cross-flow than is observed 
in the measurements. This can be seen in Figure 5 where the 
location Ymax for the grid node with the maximum velocity ]ut is 
plotted as a function of downstream distance x and compared 
with the measurements. This behavior is accompanied by a 
general overprediction of the spreading rate. A more slender jet 
is predicted with the adapted mesh at stations close to the jet 
exit, x/D = 0.5, x/D = 1, and x/D = 1.5, which must be at- 
tributed to the much finer resolution around the jet exit achieved 
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with this mesh. Farther downstream, the simulations on the 
adapted grid show a larger spreading rate, as compared to the 
results obtained with the rectangular mesh. In this region, the 
adapted mesh is coarser, as can be seen in Figure 2, and, 
consequently, the flow resolution is poorer. The axial velocity 
fluctuations confirm this interpretation. In Figure 4, the nor- 
malised rms values are plotted at various stations x / D  down- 
stream of the jet exit. At distances up to x / D  = 2, turbulent 
fluctuations are predicted to be stronger on the rectangular mesh 
than those calculated with the adapted mesh, in the axial as well 
as the spanwise and the wall-normal components (not shown 
here). Farther downstream, maximum values of turbulent fluctu- 
ations fall below those obtained with the adapted mesh and are 
largely consistent with the observed spreading of the jet. It is also 
apparent that the location of the simulated shear layers do not 
coincide with the measurements in all simulations. The maxima 
in the plotted profiles indicate that the shear layer on the 
concave side of the jet is predicted to be closer to the wall than is 
observed in the measurements. In addition, the fluctuations on 
the concave side of the jet are overpredicted in all shown 
simulations. Both of these observations are associated with the 
large mean gradient predicted in this area, resulting in large 
turbulence production and, thus, higher fluctuations than ob- 
served in the measurements. However, qualitatively, the pre- 
dicted shapes of the profiles are consistent with the stabilising 
and destabilising effects of streamline curvature observed experi- 
mentally. On the convex side, the velocity fluctuations spread 
into the cross stream, while on the concave side, a much more 
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rapid fall in turbulent intensities is observed. A similar behaviour 
can be seen from the mean profiles. 

To compare the different residual scale models, further calcu- 
lated were undertaken on the adapted mesh, because this, in 
general, gave slightly more realistic values for the turbulent 
fluctuations. 

Residual scale closures 

The introduction of a length scale A s modified to account for 
mesh anisotropy (Scotti et al. 1993) had virtually no effect on the 
predicted statistics. Results, not shown here, using a Smagorinsky 
constant C s = 0.165 with the length scale A, defined in Equation 
12, were virtually indistinguishable from those obtained using an 
adjusted length scale As, shown in Figures 3 and 4. 

In Figures 6-8 results for simulations with C s = 0.165 and A s 
are compared to results obtained using the one-equation model 
and the dynamic model described in the Basic equation and 
modelling section. For the dynamic model and the one-equation 
model, a simple length scale A was used. Figure 6 shows mean 
streamlines for the different simulations, and Figures 7 and 8 
show profiles for the mean and rms values of the axial velocity 
component. It is clear from these figures that differences be- 
tween the various predictions are largest in the far field of the 
flow. In the simulations with the Smagorinsky-Lilly model, the 
jet attaches to the wall at x / D  = 82, while the one-equation and 
the dynamic model result in a somewhat shorter recirculation 
zone. 
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Close to the jet exit, the one-equation model and the 
Smagorinsky-Lilly model give virtually identical mean axial ve- 
locity profiles, as can be observed in Figure 7. The results with 
the dynamic model differ only slightly, although this model 
predicts a more rapid mixing of the jet and the cross-flow, as can 
be seen from profiles for x / D  = 0.5 to x / D  = 1.5. This is accom- 
panied by larger fluctuations u' on the convex side of the mixing 
layer and slightly larger maxima for the axial fluctuations at 
locations x / D  = 1 to x / D  = 4 with the dynamic model compared 
to the other models. The figures also show that the one-equation 
model gives slightly more realistic results for the axial intensities 
in the recirculation zone. 

Although the predicted statistics are similar, the various mod- 
els generate considerably different eddy-viscosities. This can be 
seen in Figure 9, where contours are plotted for the ratio ( v t / v )  
of the residual scale eddy-viscosity and the molecular viscosity. 
The eddy-viscosities shown were calculated for one realisation in 
time for each simulation and averaged in the homogeneous 
direction. As can be observed, the one-equation model intro- 
duces the largest residual stresses relative to the viscous terms, 
while the dynamic model generally predicts the lowest ratio, 
particularly away from the jet exit. However, the eddy-viscosities 
obtained with the dynamic model vary rapidly with position. 
Values up to ( v t / v )  = 400 are predicted locally, and these values 
are considerably larger than those resulting from the other 
models. The levels of damping introduced by the residual scale 
models are partly reflected in the predicted levels of turbulent 
fluctuations. The one-equation model results in lower maximum 
values for the turbulent stresses and produces lower oscillations 
in the recirculation zone than do the other two models, while the 
dynamic model generated increased fluctuations, as can be seen 
from the profile of u' in Figure 8. 

The ratios ( v J v )  plotted in Figure 9 indicate that the dissipa- 
tion introduced with the residual scale modelling is at least an 
order of magnitude larger than is the case in simple configura- 
tions, such as channel flows, where the average eddy-viscosity is 
generally of the same order as the molecular viscosity. It is 
essentially for this reason that solutions obtained without any 
residual scale model exhibited large nonphysical oscillations in 
the present case. This is quite unlike the behaviour in, for 
example, plane channel flows where the effects of omitting the 
residual scale model are generally small. In the present case, the 
occurrence of nonphysical oscillations was particularly pro- 
nounced for simulations on the rectangular mesh so that a large 
value of C s = 0.3 had to be used to account for unresolved 
turbulence in the shear layer around the jet exit. 

It is interesting to note that the overall level of kinetic energy 
dissipated by means of the residual scale model has a larger 
effect on the statistics than the details of the turbulence model 
itself. In a comparison of the results form the adapted mesh in 
Figures 3, 4, 7, and 8, it can be seen that a change in the 
Smagorinsky constant from its equilibrium value of C s = 0.165 to 
C s = 0.3 has a larger effect on the turbulence fluctuations and 
the mean velocities than replacing the Smagorinsky-Lilly with 
the one-equation model; this is with model constant values for 
both models based upon equilibrium assumptions (Schmidt and 
Schumann 1989). 

Conclusions 

Large-eddy simulations of a plane jet in a cross-flow were carried 
out with a synthetic inflow condition and approximate wall 
boundary conditions. Reasonable agreement was obtained, de- 
spite a relatively coarse mesh and simple model assumptions for 
the residual stresses. Integration times were large because of the 
fine mesh required around the jet exit and the associated small 
time-steps. 
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It was found that adapting the mesh to the solution arc length 
of the mean velocity in order to increase the numerical resolu- 
tion in the vicinity of the jet exit had only a small effect on the 
results. A probable cause of this is that the mesh adaptation 
resulted in a local refinement in the mean shear layers develop- 
ing around the jet at the expense of reduced resolution in the 
other regions. For example, numerical resolution was reduced in 
the recirculation region and the cross-flow region away from the 
jet on the adapted mesh when compared to the rectangular one. 
Also, in the present case, the mesh was only refined in two 
dimensions, and the adaptation resulted in a strongly anisotropic 
grid. As a consequence, little benefit appeared to result from the 
mesh adaptation. The mean velocity field is probably not the 
optimum parameter for mesh refinement in LES computations. 

The various residual stress models were found to have only a 
small effect on the predicted results, despite the fact that they 
gave rise to very different values for the residual scale eddy- 
viscosity. However, all residual scale models dissipate a signifi- 
cant level of resolved turbulence energy, and for the mesh sizes 
used in the present work, residual scale modelling is essential to 
prevent an accumulation of turbulent kinetic energy in the large 
scales and corresponding nonphysical oscillations. The Smagorin- 
sky-Lilly model and the residual turbulent energy transport 
equation model produced very similar results, although the trans- 
port equation model resulted in a slightly improved prediction of 
turbulence quantities. The simulations generated with the dy- 
namic model did display differences as compared with those 
obtained with the other models, but no improvement in the level 
of agreement with the measured data was achieved. The use of a 
length scale adjusted to account for mesh anisotropy also had 
virtually no effect on the results. Overall, these results lend 
support to the view that LES is relatively insensitive to the 
residual scale closure in regions remote from solid surfaces. 
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